ON A PROBLEM OF TURÁN ABOUT POLYNOMIALS WITH CURVED MAJORANTS

BY Q. I. RAHMAN

Abstract. Let $\phi(x) \ge 0$ for $-1 \le x \le 1$. For a fixed x_0 in [-1, 1] what can be said for max $|p'_n(x_0)|$ if $p_n(x)$ belongs to the class P_{ϕ} of all polynomials of degree n satisfying the inequality $|p_n(x)| \le \phi(x)$ for $-1 \le x \le 1$? The case $\phi(x) = 1$ was considered by A. A. Markov and S. N. Bernstein. We investigate the problem when $\phi(x) = (1 - x^2)^{1/2}$. We also study the case $\phi(x) = |x|$ and the subclass consisting of polynomials typically real in |z| < 1.

The following theorem was proved by A. A. Markov in 1889.

THEOREM A. If $p_n(x)$ is a polynomial of degree n, such that $|p_n(x)| \le 1$ for $-1 \le x \le 1$, then

(1)
$$\max_{-1 \le x \le 1} |p'_n(x)| \le n^2.$$

The original paper [9] of Markov is not readily accessible but an excellent account of this and other related results is presented in [4]. In Theorem A equality is attainable only at ± 1 and only for $p_n(x) = e^{i\gamma}T_n(x)$ where

$$T_n(x) = \cos(n\cos^{-1}x) = 2^{n-1} \prod_{1}^{n} \left\{ x - \cos((\nu - \frac{1}{2})\pi/n) \right\}$$
$$= \frac{n}{2} \sum_{n=0}^{\lfloor n/2 \rfloor} (-1)^m \frac{(n-m-1)!}{m!(n-2m)!} (2x)^{n-2m}$$

is the so-called Chebyshev polynomial of the first kind.

For points x lying in the interval $|x| < \cos(\frac{1}{2}\pi/n)$ the following theorem of Bernstein [2] gives a better estimate for $|p'_n(x)|$.

THEOREM B. Under the conditions of Theorem A

$$|p'_n(x)| \le n(1-x^2)^{-1/2}, \quad -1 < x < 1.$$

This dominant $n(1-x^2)^{-1/2}$ is the best possible dominant only at the points $x = \cos \{(2k+1)\pi/(2n)\}, k=1, 2, \ldots, n-1$. It is, however, asymptotically equal to the precise bound at every fixed point in the interior of the interval as n becomes infinite.

Received by the editors February 1, 1971.

AMS 1970 subject classifications. Primary 30A06, 30A40; Secondary 42A04.

Key words and phrases. Polynomials with curved majorants, Chebyshev polynomial of the first kind, Chebyshev polynomial of the second kind, polynomials typically real in |z| < 1, Gauss-Lucas theorem.

At a conference on Constructive Function Theory held in Varna, Bulgaria, Professor P. Turán proposed the following problem:

Problem. For any x_0 in [-1, 1] determine max $|p'_n(x_0)|$ for all polynomials $p_n(x)$ of degree $\leq n$ satisfying the restriction

(3)
$$\max_{-1 \le x \le 1} \frac{|p_n(x)|}{\sqrt{(1-x^2)}} = 1.$$

He remarked that even the value of $\max_{-1 \le x \le 1} |p'_n(x)|$ did not seem to be known for the class in (3).

For real-valued polynomials the hypothesis says that the graph of $p_n(x)$ on the interval -1 < x < 1 is contained in the closed unit disk.

Let π_n denote the class of polynomials $p_n(x)$ of degree n which satisfy $|p_n(x)| \le (1-x^2)^{1/2}$ for -1 < x < 1.

In looking for the maximum of $|p_n^{(k)}(z^*)|$ (the kth derivative at a given point) for all polynomials $p_n(x)$ of degree at most n which satisfy $|p_n(x)| \le 1$ for $-1 \le x \le 1$ it is enough to consider the subclass A_n whose members are in addition real on the real axis. Let $p_n^{(k)}(z^*) = e^{i\gamma}|p_n^{(k)}(z^*)|$ and let $e^{-i\gamma}p_n(z) = p_{n,1}(z) + ip_{n,2}(z)$ where $p_{n,1}$ and $p_{n,2}$ are elements of A_n . Since $p_{n,1}^{(k)}(z^*) = |p_n^{(k)}(z^*)|$ the maximum of $|p_n^{(k)}(z^*)|$ is attained, if at all, for some p_n in A_n . The following theorem of Duffin and Schaeffer [7, p. 240] shows that the functions in A_n are uniformly bounded on every compact set. Hence [1, p. 216] the maximum of $|p_n^{(k)}(z^*)|$ is, in fact, attained.

THEOREM C. Let $p_n(z)$ be a polynomial of degree n or less such that in the real interval (-1, 1) $|p_n(z)| \le 1$. Then for z lying on the ellipse \mathscr{E}_R with foci at -1, +1 and semiaxes $\frac{1}{2}(R+R^{-1}), \frac{1}{2}(R-R^{-1})$, we have $|p_n(z)| \le \frac{1}{2}(R^n+R^{-n})$.

For precisely the same reason as above the maximum of $|p_n^{(k)}(z^*)|$ over the class π_n is attained for a polynomial which is real on the real axis.

We prove

THEOREM 1. If $p_n(x)$ is a polynomial of degree n such that $|p_n(x)| \le (1-x^2)^{1/2}$ for -1 < x < 1, then

(4)
$$\max_{-1 \le x \le 1} |p'_n(x)| \le 2(n-1).$$

If

$$U_n(x) = (1-x^2)^{-1/2} \sin \{(n+1)\cos^{-1} x\} = \sum_{m=0}^{\lfloor n/2\rfloor} (-1)^m \frac{(n-m)!}{m!(n-2m)!} (2x)^{n-2m}$$

is the nth Chebyshev polynomial of the second kind then $p_n(x) = (1-x^2)U_{n-2}(x)$ satisfies the conditions of Theorem 1 and $|p'_n(\pm 1)| = 2(n-1)$. Hence the result is best possible.

THEOREM 2. Under the conditions of Theorem 1

$$|p'_n(x)| \le \{x^2(1-x^2)^{-1} + (n-1)^2\}^{1/2}, \qquad -1 < x < 1.$$

The example $p_n(x) = e^{iy}(1-x^2)U_{n-2}(x)$ shows that in (5) equality can be attained at those points of the interval -1 < x < 1 where $(n-1)(1-x^2)^{1/2} \tan \{(n-1)\cos^{-1} x\} = x$.

It follows from Theorem B that if $p_n(x)$ is a polynomial of degree n such that $|p_n(x)| \le 1$ for $-1 \le x \le 1$ then $n^{-1}(1-x^2)p_n'(x) \in \pi_{n+1}$. Hence we have the following corollary of Theorem 2.

COROLLARY 1. If $p_n(x)$ is a polynomial of degree n such that $|p_n(x)| \le 1$ for -1 $\le x \le 1$, then

(6)
$$|(1-x^2)p_n''(x)-2xp_n'(x)| \le n\{x^2(1-x^2)^{-1}+n^2\}^{1/2}, -1 < x < 1.$$

When x=0 inequality (5) may be restated as follows:

If $p_n(x) = \sum_{k=0}^n a_k x^k \in \pi_n$ then $|a_1| = |p'_n(0)| \le n-1$. This inequality is sharp for odd n. Here again the extremal polynomial is $e^{i\gamma}(1-x^2)U_{n-2}(x)$.

We also estimate $|a_2|$.

THEOREM 3. If $p_n(x) = \sum_{k=0}^n a_k x^k \in \pi_n$ then

(7)
$$|a_2| \le \{(n-1)^2 + 1\}/2.$$

For even *n* the bound in (7) is attained when $p_n(x) = e^{i\gamma}(1-x^2)U_{n-2}(x)$.

The next theorem is a refinement of Theorem C for polynomials belonging to π_n .

THEOREM 4. If $p_n(z) \in \pi_n$ then for z lying on the ellipse \mathscr{E}_R with foci at the points -1, +1 and semiaxes $\frac{1}{2}(R+R^{-1})$, $\frac{1}{2}(R-R^{-1})$, we have

(8)
$$|p_n(z)| \leq |1-z^2|^{1/2} \frac{1}{2} (R^{n-1} + R^{-n+1}).$$

The problem of Turán mentioned earlier is a special case of the following general question subsequently asked by him:

Let $\phi(x) \ge 0$ for $-1 \le x \le 1$. For a fixed x_0 in [-1, 1] what can be said for max $|p'_n(x_0)|$ if $p_n(x)$ belongs to the class P_{ϕ} of all polynomials of degree $\le n$ satisfying the inequality $|p_n(x)| \le \phi(x)$ for $-1 \le x \le 1$.

We shall consider only the simple class $P_{|x|}$ of polynomials $p_n(x)$ of degree $\leq n$ which are dominated by the function |x| on [-1, 1].

If $p_n(z)$ is a polynomial of degree n such that $|p_n(x)| \le |x|$ for $-1 \le x \le 1$ then $p_n(z) = zg_{n-1}(z)$ where $g_{n-1}(z)$ is a polynomial of degree n-1. Since, clearly, $|g_{n-1}(x)| \le 1$ for $-1 \le x \le 1$, Theorem A gives

$$|p'_n(x)| \le |x| |g'_{n-1}(x)| + |g_{n-1}(x)| \le (n-1)^2 + 1$$

for $-1 \le x \le 1$. Thus we have

THEOREM 5. If $p_n(z)$ is a polynomial of degree n such that $|p_n(x)| \le |x|$ for $-1 \le x \le 1$ then

(9)
$$\max_{-1 \le x \le 1} |p'_n(x)| \le (n-1)^2 + 1.$$

The example $p_n(z) = zT_{n-1}(z)$, where $T_{n-1}(z)$ is the Chebyshev polynomial of the first kind of degree n-1, shows that (9) is sharp.

We also prove

THEOREM 6. If $p_n(x)$ is a polynomial of degree $\leq n$ such that $|p_n(x)| \leq |x|$ for $-1 \leq x \leq 1$ then for a fixed x_0 in (-1, 1) we have

$$|p'_n(x_0)| \le \{(n-1)^2 x_0^2 (1-x_0^2)^{-1} + 1\}^{1/2}.$$

The example $p_n(z) = e^{i\gamma} z T_{n-1}(z)$ shows that in (10) equality is attained at those points of the interval -1 < x < 1 where $(1-x^2)^{1/2} \tan \{(n-1)\cos^{-1} x\} = (n-1)x$.

From a geometric point of view, those members of the class $P_{|x|}$ which are typically real [10] in |z| < 1 constitute an interesting subclass. If we restrict ourselves to this subclass we can replace (9) by a considerably stronger inequality.

THEOREM 7. Let $p_n(z)$ be a polynomial of degree n such that $|p_n(x)| \le |x|$ for $-1 \le x \le 1$. If $p_n(z)$ is typically real in |z| < 1 then

(11)
$$|p'_n(x)| \le (n+1)/2$$
 for $-1 \le x \le 1$.

A function g(z) analytic in |z| < 1 is typically real in |z| < 1 if and only if [10, p. 112] g(z) is real for real z and Re $\{((1-z^2)/z)g(z)\} \neq 0$ in |z| < 1. Hence if n is odd the polynomial

$$p_n(z) = 2(z+z^3+\cdots+z^n)/(n+1)$$

is typically real in |z| < 1. It also belongs to $P_{|x|}$, and since $|p'_n(1)| = (n+1)/2$ the bound in (11) cannot in general be improved.

Lemmas. We shall now collect some results which we shall use in the proofs of the above theorems.

If $p_n(x)$ is a polynomial of degree n then $p_n(\cos \theta)$ is a trigonometric polynomial of degree n. Since $d\theta = -(1-x^2)^{-1/2} dx$, inequality (2) states that $|(d/d\theta)p_n(\cos \theta)| \le n$. Hence Theorem B is a consequence of the following result known as Bernstein's theorem for trigonometric polynomials.

THEOREM D. If $t(\theta)$ is a trigonometric polynomial of degree n and $|t(\theta)| \le 1$, then $|t'(\theta)| \le n$.

It has been remarked by Boas [4, p. 169] that Markov's theorem (Theorem A) would also follow from Bernstein's theorem for trigonometric polynomials if it could be shown that $|p'_n(x)|$ attains its maximum at ± 1 if $p_n(x)$ is extremal.

We observe that the following result which is a refined version of Bernstein's theorem for trigonometric polynomials and which was independently proved by Szegö [12, p. 69], Boas [3, p. 287], van der Corput and Schaake [6, p. 321] is more appropriate for the study of polynomials on the unit interval and gives Markov's theorem as an immediate corollary.

451

LEMMA 1. Let $t(\theta) = \sum_{k=-n}^{n} a_k e^{ik\theta}$ be a real trigonometric polynomial of degree n. If $|t(\theta)| \le 1$ then

(12)
$$n^{2}\{t(\theta)\}^{2} + \{t'(\theta)\}^{2} \leq n^{2}.$$

This result plays a central role in our paper. First of all we use it to prove:

LEMMA 2. If $p_{n-1}(x)$ is a real valued polynomial of degree n-1 such that $(1-x^2)^{1/2}|p_{n-1}(x)| \le 1$ for -1 < x < 1 then

$$|p_{n-1}(x)| \le n \quad \text{for } -1 \le x \le 1.$$

Our hypothesis implies that $(\sin \theta)p_{n-1}(\cos \theta)$ is a real trigonometric polynomial of degree n whose absolute value does not exceed 1. Hence according to Lemma 1

$$n^2 \sin^2 \theta \{p_{n-1}(\cos \theta)\}^2 + \{(\cos \theta)p_{n-1}(\cos \theta) + (\sin \theta)(d/d\theta)p_{n-1}(\cos \theta)\}^2 \le n^2$$

for real θ . At a point where $|p_{n-1}(\cos \theta)|$ attains its maximum value, $(d/d\theta)p_{n-1}(\cos \theta)$ must vanish. Consequently, at such a point θ_0 ,

$$n^2(\sin^2\theta_0)\{p_{n-1}(\cos\theta_0)\}^2 + (\cos^2\theta_0)\{p_{n-1}(\cos\theta_0)\}^2 \le n^2$$

or

$$(n^2-1)(\sin^2\theta_0)\{p_{n-1}(\cos\theta_0)\}^2+\{p_{n-1}(\cos\theta_0)\}^2 \le n^2.$$

Therefore $|p_{n-1}(\cos \theta_0)| \le n$ which gives the desired result.

For the sake of completeness we include a proof of Lemma 1. In this way we will also be giving a complete and independent proof of Markov's theorem (since it follows from Theorem B in conjunction with Lemma 2). It may be noted that our proof of Lemma 1 depends only on the maximum modulus principle and the Gauss-Lucas theorem [8, p. 84].

Proof of Lemma 1. Let p(z) be a polynomial of degree m such that $|p(z)| \le M$ for $|z| \le 1$. Then for $|\lambda| > 1$ the polynomial $P(z) = p(z) - \lambda M$ does not vanish in $|z| \le 1$. Let

$$Q(z) = z^{m} \overline{P(1/\overline{z})} = z^{m} \overline{P(1/\overline{z})} - \lambda M z^{m} = q(z) - \lambda M z^{m}.$$

Since the function Q(z)/P(z) is holomorphic in $|z| \le 1$ and |Q(z)| = |P(z)| for |z| = 1 it follows from the maximum modulus principle that $|Q(z)/P(z)| \le 1$ for $|z| \le 1$. Replacing z by $1/\overline{z}$ we conclude that $|P(z)| \le |Q(z)|$ for $|z| \ge 1$. Thus for $|\mu| > 1$ all the zeros of the polynomial $P(z) - \mu Q(z)$ lie in |z| < 1 and so do the zeros of $P'(z) - \mu Q'(z)$ by Gauss-Lucas theorem. Consequently,

(14)
$$|p'(z)| = |P'(z)| \le |Q'(z)| = |q'(z) - \bar{\lambda} M m z^{m-1}| \text{ for } |z| \ge 1.$$

According to our hypothesis $|p(z)| \le M$ for $|z| \le 1$. Since

$$p(z) \equiv z^m \overline{q(1/\bar{z})},$$

we have

$$|z^m \overline{q(1/\overline{z})}| \le M$$
 for $|z| \le 1$,

i.e., $|q(z)| \le M|z|^m$ for $|z| \ge 1$. Hence for $|\Lambda| > 1$ all the zeros of the polynomial $q(z) - \Lambda M z^m$ lie in |z| < 1 and by the Gauss-Lucas theorem so do the zeros of $q'(z) - \Lambda M m z^{m-1}$. This implies that $|q'(z)| \le M m |z|^{m-1}$ for $|z| \ge 1$. Given a point z in the circular domain $|z| \ge 1$, this inequality permits us to choose arg λ in (14) such that $|q'(z) - \lambda M m z^{m-1}| = |\lambda| M m |z|^{m-1} - |q'(z)|$. We readily obtain

(15)
$$|p'(z)| + |q'(z)| \le Mm|z|^{m-1}$$
 for $|z| \ge 1$.

In particular, we have

$$(16) \qquad |(d/d\theta)p(e^{i\theta})| + |-imp(e^{i\theta}) + (d/d\theta)p(e^{i\theta})| \leq Mm.$$

If $t(\theta) = \sum_{k=-n}^{n} a_k e^{ik\theta}$ is a trigonometric polynomial of degree n and $|t(\theta)| \le 1$ then $e^{in\theta}t(\theta) = p(e^{i\theta})$ where p(z) is a polynomial of degree 2n such that $|p(z)| \le 1$ for $|z| \le 1$. From (16) we get $|int(\theta) + t'(\theta)| + |-int(\theta) + t'(\theta)| \le 2n$. Hence $n^2\{t(\theta)\}^2 + \{t'(\theta)\}^2 \le n^2$ if the trigonometric polynomial is real.

For the proof of Theorem 7 we shall need the following result due to de Bruijn [5, Theorem 4].

LEMMA 3. Let C be a circular domain in the z-plane, and S an arbitrary point set in the w-plane. If the polynomial P(z) of degree n satisfies $P(z) = w \in S$ for any $z \in C$, then we have, for any $z \in C$ and any $\xi \in C$,

$$(\xi/n)P'(z)+P(z)-zP'(z)/n \in S.$$

Proofs of the theorems.

Proof of Theorem 1. As remarked earlier there is no loss of generality in assuming $p_n(x)$ to be real-valued. Since $p_n(x)$ vanishes at the points -1, +1 we have $p_n(x) = (1-x^2)q_{n-2}(x)$ where $q_{n-2}(x)$ is a polynomial of degree n-2. We set $(1-x^2)^{1/2}q_{n-2}(x) = f(x)$ and write $p_n(x)$ as the product of $(1-x^2)^{1/2}$ and f(x). Thus

(17)
$$|p'_n(x)| = |-x(1-x^2)^{-1/2}f(x) + (1-x^2)^{1/2}f'(x)| \le |x| |(1-x^2)^{-1/2}f(x)| + |(1-x^2)^{1/2}f'(x)|.$$

We observe that $f(\cos \theta)$ is a trigonometric polynomial of degree n-1 whose absolute value does not exceed 1. Hence according to Theorem D $|(d/d\theta)f(\cos \theta)| \le n-1$ for real θ . Since

$$(-\sin\theta)\frac{d}{d(\cos\theta)}f(\cos\theta) = \frac{d}{d\theta}f(\cos\theta)$$

we get

(18)
$$|(1-x^2)^{1/2}f'(x)| \le n-1 \quad \text{for } -1 \le x \le 1.$$

Now let us note that $(1-x^2)^{-1/2}f(x)$ is a polynomial of degree n-2 such that $|(1-x^2)^{1/2}\cdot(1-x^2)^{-1/2}f(x)| = |f(x)| \le 1$ for $-1 \le x \le 1$. Hence by Lemma 2

(19)
$$|(1-x^2)^{-1/2}f(x)| \le n-1 \quad \text{for } -1 \le x \le 1.$$

Using (18) and (19) in (17) we get the desired estimate for $\max_{-1 \le x \le 1} |p'_n(x)|$.

REMARK. Our proof of Theorem 1 makes particular use of the fact that the polynomial $p_n(z)$ under consideration vanishes at the points -1, +1. However, the bound for $\max_{-1 \le x \le 1} |p'_n(x)|$ is not very much improved if we only add this requirement to the hypothesis in Markov's theorem. By considering the polynomial $p_n(x) = \cos n \cos^{-1} (x \cos (\pi/2n))$ we see that $\max_{-1 \le x \le 1} |p'_n(x)|$ can be as large as $n \cot (\pi/2n)$ if $p_n(\pm 1) = 0$ and $\max_{-1 \le x \le 1} |p_n(x)| = 1$. A theorem of Schur [11, pp. 284–285] says that $\max_{-1 \le x \le 1} |p'_n(x)| \le n \cot (\pi/2n)$ for every polynomial of degree $\le n$ satisfying the inequality $|p_n(x)| \le 1$ for $-1 \le x \le 1$ and vanishing at the points -1, +1.

Proof of Theorem 2. Without loss of generality we may assume $p_n(x)$ to be real-valued. Again setting $f(x) = (1-x^2)^{-1/2}p_n(x)$ we see that $f(\cos \theta)$ is a real trigonometric polynomial of degree n-1 whose absolute value does not exceed 1. Hence from Lemma 1

$$(20) (n-1)^2 f^2(x) + (1-x^2) \{f'(x)\}^2 \le (n-1)^2 \text{for } -1 \le x \le 1.$$

Using this inequality in (17) we conclude that for -1 < x < 1

$$|p'_n(x)| \le |x|(1-x^2)^{-1/2}|f(x)| + (n-1)\{1-|f(x)|^2\}^{1/2}$$

$$\le \max_{0 \le y \le 1} \{|x|(1-x^2)^{-1/2}y + (n-1)(1-y^2)^{1/2}\}.$$

For a given x in (-1, 1) the maximum of the expression $|x|(1-x^2)^{-1/2}y + (n-1)(1-y^2)^{1/2}$ is $\{x^2(1-x^2)^{-1} + (n-1)^2\}^{1/2}$ which is attained when

$$y = |x|\{(n-1)^2(1-x^2)+x^2\}^{-1/2}.$$

Proof of Theorem 3. We have

$$|a_2| = \frac{1}{2} |p_n''(0)| = \frac{1}{2} |f''(0) - f(0)| \le \frac{1}{2} \{ |f''(0)| + |f(0)| \}$$

where $f(x) = (1 - x^2)^{-1/2} p_n(x)$. Now if $F(\theta) = f(\cos \theta)$ then $|f''(0)| = |F''(\pi/2)|$ and hence by Theorem D $|f''(0)| \le (n-1)^2$. Since $|f(0)| \le 1$ we get the desired result.

Proof of Theorem 4. This result is proved in exactly the same way as Theorem C was proved by Duffin and Schaeffer [7, p. 240]. We need only to observe that $f(\cos z) = (\csc z)p_n(\cos z)$ is an entire function of exponential type n-1.

If $p_n(z) = (1-z^2)U_{n-2}(z)$, then (8) becomes an equality at the points

$$z = ((R+R^{-1})/2)\cos\phi_k \pm i((R-R^{-1})/2)\sin\phi_k$$

where $\phi_k = \{(2k + (-1)^k)/2(n-1)\}\pi$, k = 0, 1, 2, ...

Proof of Theorem 6. It is enough to prove the theorem for polynomials which assume real values on the real axis. We have $p_n(x) = xg_{n-1}(x)$ where $g_{n-1}(x)$ is a polynomial of degree n-1 which assumes real values for real x and $|g_{n-1}(x)| \le 1$ for $-1 \le x \le 1$. Thus $g_{n-1}(\cos \theta)$ is a real trigonometric polynomial of degree n-1 such that $|g_{n-1}(\cos \theta)| \le 1$. Hence from Lemma 1 we get

$$(21) (n-1)^2 \{g_{n-1}(x)\}^2 + (1-x^2) \{g'_{n-1}(x)\}^2 \le (n-1)^2 \text{for } -1 \le x \le 1.$$

We use this inequality in $|p'_n(x)| \le |g_{n-1}(x)| + |x| |g'_{n-1}(x)|$ to complete the proof of the theorem in precisely the same way as for Theorem 2.

Proof of Theorem 7. According to hypothesis $p_n(z)$ assumes real values in |z| < 1 if and only if z is real. Hence $p'_n(x) \neq 0$ for -1 < x < 1 and $p_n(x)$ is a monotonic function on the interval $-1 \le x \le 1$. Without loss of generality we may suppose $p_n(x)$ to be increasing on [-1, 1]. Let x_0 be a given point of the open interval (0, 1). The polynomial $P(z) = p_n(x_0 z)$ is typically real in $|z| < 1/x_0$ and hence in $|z| \le 1$. Also $|P(x)| \le x_0$ for $-1 \le x \le 1$. Since the only zero of P(z) in $|z| < |x_0|^{-1}$ is a simple zero at the origin, $Q(z) = z^n P(z^{-1})$ is a polynomial of degree n-1 having all its zeros in $|z| \le x_0$. Hence according to Walsh's generalization of Laguerre's theorem [13, Lemma 1, p. 13] Q'(1)/Q(1) = (n-1)/(1-w) where $|w| \le x_0$. Consequently $|Q'(1)| \ge ((n-1)/(1+x_0))|Q(1)|$, i.e.

$$(22) |np_n(x_0) - x_0 p'_n(x_0)| \ge \frac{n-1}{1+x_0} |p_n(x_0)| = \frac{n-1}{1+x_0} p_n(x_0).$$

But if $z_1, z_2, \ldots, z_{n-1}$ are the zeros of $z^{-1}p_n(z)$ then

$$\frac{x_0 p'_n(x_0)}{p_n(x_0)} = \text{Re}\left\{\frac{x_0 p'_n(x_0)}{p_n(x_0)}\right\} = 1 + \sum_{j=1}^{n-1} \text{Re}\left(\frac{x_0}{x_0 - z_j}\right)$$

where Re $(x_0/(x_0-z_j)) \le \frac{1}{2}$, $1 \le j \le n-1$, since $|z_j| \ge 1$. Thus $np_n(x_0) - x_0p'_n(x_0) \ge \frac{1}{2}(n-1)p_n(x_0) \ge 0$, and (22) can be written as

$$np_n(x_0) - x_0p'_n(x_0) \ge \frac{n-1}{1+x_0}p_n(x_0).$$

This implies that the point $p_n(x_0) - n^{-1}x_0p'_n(x_0)$ lies on the interval

$$[(1-n^{-1})(1+x_0)^{-1}p_n(x_0), p_n(x_0)].$$

Now we note that the image S of the circular domain $|z| \le x_0$ under the mapping $w = p_n(z)$ lies in the plane cut along the positive real axis from $p_n(x_0)$ to infinity. According to Lemma 3 the disk

$$|w - \{p_n(x_0) - n^{-1}x_0p'_n(x_0)\}| \le n^{-1}x_0p'_n(x_0)$$

lies in S. This is possible only if

$$n^{-1}x_0p'_n(x_0) \leq p_n(x_0)\{1-(1-n^{-1})(1+x_0)^{-1}\}.$$

Since $p_n(x_0) \le x_0$ we get

(23)
$$p'_n(x_0) \le n - (n-1)(1+x_0)^{-1}.$$

By continuity $p'_n(0) \le 1$ and $p'_n(1) \le (n+1)/2$. Hence

(24)
$$\max_{0 \le x \le 1} p'_n(x) \le (n+1)/2.$$

Applying this result to $-p_n(-x)$ we get

(25)
$$\max_{-1 \le x \le 0} p'_n(x) \le (n+1)/2.$$

The desired result follows from (24) and (25).

Inequality (23) gives an estimate for $|p'_n(x_0)|$ at a fixed point x_0 in [-1, 1] but the bound does not appear to be sharp except at -1, 0, +1.

I wish to thank Professor P. Erdös for telling me about the problem of Turán.

REFERENCES

- 1. L. V. Ahlfors, Complex analysis: An introduction to the theory of analytic functions of one complex variable, 2nd ed., McGraw-Hill, New York, 1966. MR 32 #5844.
- 2. S. Bernstein, Sur l'ordre de la meilleure approximation des fonctions continues par des polynômes de degré donné, Mém. Acad. Roy. Belg. (2) 4 (1912), 1-103.
- 3. R. P. Boas, Some theorems on Fourier transforms and conjugate trigonometric integrals, Trans. Amer. Math. Soc. 40 (1936), 287-308.
 - 4. ——, Inequalities for the derivatives of polynomials, Math. Mag. 42 (1969), 165-174.
- 5. N. G. de Bruijn, *Inequalities concerning polynomials in the complex domain*, Nederl. Akad. Wetensch. Proc. Ser. A. **50** (1947), 1265–1272=Indag. Math. **9** (1947), 591–598.
- 6. J. G. van der Corput and G. Schaake, Ungleichungen für Polynome und trigonometrische Polynome, Compositio Math. 2 (1935), 321-361.
- 7. R. Duffin and A. C. Schaeffer, Some properties of functions of exponential type, Bull. Amer. Math. Soc. 44 (1938), 236-240.
- 8. E. Hille, Analytic function theory. Vol. 1, Introduction to Higher Math., Ginn, Boston, Mass., 1959. MR 21 #6415.
- 9. A. Markov, On a problem of D. I. Mendeleev, Zap. Imp. Akad. Nauk 62 (1889), 1-24. (Russian)
- 10. W. Rogosinski, Über positive harmonische Entwicklungen und typisch-reelle Potenzreihen, Math. Z. 35 (1932), 93-121.
- 11. I. Schur, Über das Maximum des absoluten Betrages eines Polynoms in einem gegebenen Intervall, Math. Z. 4 (1919), 271-287.
- 12. G. Szegő, Über einen Satz des Herrn Serge Bernstein, Schr. Königsberg. Gel. Ges. 5 (1928), 59-70.
- 13. J. L. Walsh, *The location of critical points of analytic and harmonic functions*, Amer. Math. Soc. Colloq. Publ., vol. 34, Amer. Math. Soc., Providence, R. I., 1950. MR 12, 249.

Université de Montréal, Montréal, Quebec, Canada